metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Triaquabis[(2-nitrophenylsulfanyl)acetato- $\kappa^2 O, O'$]cadmium(II) dihydrate

Yan-Jun Hou, Zhi-Zhong Sun,* Ying-Hui Yu, Bai-Yan Li and Guang-Feng Hou

College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China Correspondence e-mail: hgf1000@163.com

Received 17 April 2007; accepted 19 April 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.030; wR factor = 0.075; data-to-parameter ratio = 17.4.

The title compound, $[Cd(C_8H_6NO_4S)_2(H_2O)_3]\cdot 2H_2O$, has a seven-coordinate Cd^{II} atom in a distorted pentagonalbipyramidal geometry defined by four carboxylate O atoms from two (2-nitrophenylsulfanyl)acetate groups and three O atoms from three water molecules. The complex molecules are linked together by intermolecular hydrogen bonds involving the uncoordinated water molecules, resulting in a two-dimensional network.

Related literature

For related literature, see: Gao et al. (2006); Shi et al., 2007; Nobles & Thompson (1965).

Experimental

Crystal data

 $\begin{bmatrix} Cd(C_8H_6NO_4S)_2(H_2O)_3 \end{bmatrix} \cdot 2H_2O \\ M_r = 626.91 \\ Monoclinic, P2_1/c \\ a = 19.550 (7) Å \\ b = 8.216 (3) Å \\ c = 14.703 (7) Å \\ \beta = 97.350 (18)^{\circ}$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.768, T_{\rm max} = 0.841$ 21719 measured reflections 5356 independent reflections 3874 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.036$

V = 2342.3 (17) Å³

Mo $K\alpha$ radiation

 $0.24 \times 0.21 \times 0.15 \text{ mm}$

 $\mu = 1.18 \text{ mm}^{-1}$

T = 293 (2) K

Z = 4

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.030$	307 parameters
$wR(F^2) = 0.075$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
5356 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O9−H13···O13 ⁱ	0.85	1.84	2.682 (3)	173
O11−H18···O12	0.85	1.83	2.673 (3)	170
O9−H14···O3 ⁱⁱ	0.85	1.85	2.688 (2)	168
$O10-H15\cdots O11^{i}$	0.85	1.94	2.777 (2)	169
O10−H16···O9 ⁱⁱⁱ	0.85	1.90	2.738 (2)	171
$O11-H17\cdots O8^{i}$	0.85	1.85	2.677 (2)	165
O13-H21···O12	0.85	2.53	3.332 (4)	157
$O13-H21\cdots O7^{iv}$	0.85	2.57	3.204 (3)	132
$O12-H19\cdots O7^{iv}$	0.85	2.24	2.950 (3)	141
$O12-H19\cdots S7^{iv}$	0.85	2.57	3.309 (2)	146
$O12-H20\cdots O2^{v}$	0.85	2.30	3.099 (3)	157
$O13-H22\cdots O4^{v}$	0.85	2.07	2.879 (3)	160
$O13-H22\cdots S1^{v}$	0.85	2.97	3.520 (2)	124

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) -x, -y + 1, -z; (iii) -x, -y, -z; (iv) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXL97*.

The authors thank Heilongjiang University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2254).

References

- Gao, J.-S., Li, B.-Y., Hou, G.-F., Hou, Y.-J. & Yan, P.-F. (2006). Acta Cryst. E62, m3473–m3474.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Nobles, W. L. & Thompson, B. B. (1965). J. Pharm. Sci. 54, 709-713.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shi, A.-E., Zhang, S., Li, B.-Y., Hou, Y.-J. & Hou, G.-F. (2007). Acta Cryst. E63, m265–m266.

Acta Cryst. (2007). E63, m1506 [doi:10.1107/S1600536807019472]

Triaquabis[(2-nitrophenylsulfanyl)acetato- $\kappa^2 O, O'$]cadmium(II) dihydrate

Y.-J. Hou, Z.-Z. Sun, Y.-H. Yu, B.-Y. Li and G.-F. Hou

Comment

The structures of the metal derivative sof 4-nitrophenylsulfanylacetic acid are known for nickel and cobalt (Gao *et al.*, 2006; Shi *et al.*, 2006). The structures of the 2-nitrophenylsulfanylacetic acid analogs are yet unknown.

The asymmetric unit of (I) consists of a cadmium(II) atom, two 2-nitrophenylsulfanylacetate groups, three coordinated water molecules and two uncoordinated water molecules (Fig.1). The CdII atom exists in a pentagonal bipyramidal configuration, with the equatorial plane being defined by the atoms O3, O4, O7, O8 and O10. Atoms O9 and O11 occupy the axial sites.

The structure is stabilized by hydrogen bonding interactions (Table 1) that link the individual components into a two-dimensional layer structure (Fig. 2).

Experimental

2-Nitrophenylsulfanylacetic acid was prepared by nucleophilic reaction of chloroacetic acid and 2-nitrothiophenol under basic conditions. (Nobles *et al.*, 1965). Cadmium(II) nitrate tetrhydrate (0.617 g, 2 mmol) and 2-nitrophenylsulfanylacetic acid (0.394 g, 2 mmol) were dissolved in water and the pH was adjusted to 6 with 0.01*M* sodium hydroxide; yellow crystals separated from the filtered solution after several days.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C) or C—H = 0.97 Å (methylene C), and with $U_{iso}(H) = 1.2Ueq(C)$. Water H atoms were initially located in a difference Fourier map but they were treated as riding on their parent atoms with O—H = 0.85 Å and with $U_{iso}(H) = 1.5Ueq(O)$.

Figures

Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 30% probability level for non-H atoms. Dashed lines indicate the hydrogen bonding interactions.

Fig. 2. A partial packing view, showing the two-dimensional hydrogen-bonding plan. Dashed lines indicate the hydrogen-bonding interactions.

$Triaquabis[(2-nitrophenylsulfanyl)acetato-\kappa^2 O, O'] cadmium (II) \ dihydrate$

 $F_{000} = 1264$

 $\lambda = 0.71073 \text{ Å}$

 $\theta=6.2{-}55.0^{o}$

 $\mu = 1.18 \text{ mm}^{-1}$

T = 293 (2) K

Block, colorless

 $0.24 \times 0.21 \times 0.15 \text{ mm}$

 $D_{\rm x} = 1.778 {\rm Mg m}^{-3}$ Mo Kα radiation

Cell parameters from 16259 reflections

Crystal data

 $[Cd_1(C_8H_6NO_4S)_2(H_2O)_3]\cdot 2H_2O$ $M_r = 626.91$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 19.550 (7) Å*b* = 8.216 (3) Å c = 14.703 (7) Å $\beta = 97.350 \ (18)^{\circ}$ $V = 2342.3 (17) \text{ Å}^3$ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer	5356 independent reflections
Radiation source: fine-focus sealed tube	3874 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.036$
T = 293(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scan	$\theta_{\min} = 3.1^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -25 \rightarrow 25$
$T_{\min} = 0.768, \ T_{\max} = 0.841$	$k = -9 \rightarrow 10$
21719 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H-atom parameters constrained
$wR(F^2) = 0.075$	$w = 1/[\sigma^2(F_o^2) + (0.0397P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
5356 reflections	$\Delta \rho_{max} = 0.61 \text{ e } \text{\AA}^{-3}$
307 parameters	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y C1 0.30664 (11) 0.0378(5)0.4539(3) -0.04068(16)C2 0.36823 (13) 0.3932 (4) -0.06608 (19) 0.0489(7) C3 0.42292 (14) 0.4928 (5) -0.0796(2)0.0663 (9) H1-0.09570.080* 0.4634 0.4478

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C4	0.41770 (15)	0.6556 (5)	-0.0695 (2)	0.0736 (10)
H2	0.4546	0.7227	-0.0784	0.088*
C5	0.35827 (16)	0.7214 (4)	-0.0462 (2)	0.0620 (8)
H3	0.3547	0.8337	-0.0403	0.074*
C6	0.30320 (13)	0.6233 (3)	-0.03103 (18)	0.0474 (6)
H4	0.2634	0.6704	-0.0142	0.057*
C7	0.18219 (11)	0.4613 (3)	0.02960 (17)	0.0372 (5)
H5A	0.2078	0.5156	0.0819	0.045*
H6B	0.1652	0.5437	-0.0149	0.045*
C8	0.12181 (11)	0.3701 (3)	0.06027 (16)	0.0353 (5)
C9	-0.30084 (11)	0.3969 (3)	0.29923 (16)	0.0351 (5)
C10	-0.36354 (12)	0.3215 (3)	0.30859 (18)	0.0423 (6)
C11	-0.42148 (13)	0.4089 (4)	0.3233 (2)	0.0598 (8)
H7	-0.4626	0.3552	0.3287	0.072*
C12	-0.41807 (15)	0.5750 (4)	0.3297 (2)	0.0649 (9)
H8	-0.4570	0.6346	0.3392	0.078*
C13	-0.35742 (14)	0.6531 (4)	0.3222 (2)	0.0570 (7)
Н9	-0.3553	0.7659	0.3269	0.068*
C14	-0.29904 (13)	0.5667 (3)	0.30782 (18)	0.0457 (6)
H10	-0.2580	0.6221	0.3038	0.055*
C15	-0.17024 (11)	0.4421 (3)	0.24590 (17)	0.0360 (5)
H11A	-0.1951	0.5165	0.2023	0.043*
H12B	-0.1521	0.5036	0.2999	0.043*
C16	-0.11144 (11)	0.3636 (3)	0.20362 (16)	0.0356 (5)
Cd4	0.003378 (7)	0.259713 (19)	0.126486 (11)	0.03280 (7)
N1	0.37706 (13)	0.2193 (4)	-0.0799 (2)	0.0645 (7)
N2	-0.37058 (12)	0.1454 (3)	0.30343 (17)	0.0561 (6)
O1	0.43488 (12)	0.1638 (4)	-0.0765 (2)	0.1115 (10)
O2	0.32566 (12)	0.1340 (3)	-0.09545 (19)	0.0847 (8)

O3	0.07383 (8)	0.4577 (2)	0.08316 (12)	0.0436 (4)
O4	0.12048 (9)	0.2188 (2)	0.06435 (14)	0.0498 (5)
O5	-0.42770 (11)	0.0854 (3)	0.3025 (2)	0.1051 (10)
O6	-0.31884 (10)	0.0624 (2)	0.30212 (16)	0.0672 (6)
O7	-0.10346 (9)	0.2133 (2)	0.20501 (14)	0.0531 (5)
O8	-0.07214 (8)	0.4579 (2)	0.16682 (12)	0.0419 (4)
O9	-0.05832 (9)	0.23693 (18)	-0.01830 (12)	0.0393 (4)
H13	-0.0962	0.1894	-0.0130	0.059*
H14	-0.0663	0.3271	-0.0460	0.059*
O10	0.00194 (8)	-0.0128 (2)	0.12473 (11)	0.0482 (5)
H15	-0.0216	-0.0704	0.1574	0.072*
H16	0.0210	-0.0737	0.0886	0.072*
O11	0.06326 (8)	0.26541 (18)	0.27275 (12)	0.0391 (4)
H17	0.0687	0.1752	0.3011	0.059*
H18	0.1021	0.3097	0.2692	0.059*
O12	0.18552 (11)	0.4145 (3)	0.28311 (18)	0.0932 (9)
H19	0.1778	0.5146	0.2712	0.140*
H20	0.2280	0.3976	0.3013	0.140*
O13	0.17204 (9)	0.5729 (2)	0.48872 (14)	0.0618 (5)
H21	0.1670	0.5556	0.4312	0.093*
H22	0.1674	0.4839	0.5167	0.093*
S1	0.23822 (3)	0.32432 (8)	-0.02060 (5)	0.04267 (16)
S7	-0.22770 (3)	0.28581 (7)	0.27683 (5)	0.04085 (15)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0292 (11)	0.0449 (14)	0.0400 (14)	-0.0044 (11)	0.0076 (10)	0.0032 (11)
C2	0.0357 (13)	0.0665 (19)	0.0459 (16)	0.0000 (13)	0.0102 (11)	0.0022 (13)
C3	0.0369 (14)	0.100 (3)	0.064 (2)	-0.0121 (17)	0.0161 (13)	0.0071 (19)
C4	0.0475 (17)	0.099 (3)	0.076 (2)	-0.0333 (19)	0.0151 (15)	0.013 (2)
C5	0.0679 (19)	0.0563 (18)	0.062 (2)	-0.0250 (16)	0.0098 (15)	0.0089 (15)
C6	0.0418 (13)	0.0467 (15)	0.0558 (17)	-0.0100 (12)	0.0140 (12)	0.0055 (12)
C7	0.0323 (12)	0.0354 (12)	0.0463 (14)	-0.0037 (10)	0.0145 (10)	-0.0009 (10)
C8	0.0317 (11)	0.0394 (13)	0.0359 (13)	-0.0035 (10)	0.0089 (10)	0.0036 (10)
C9	0.0299 (11)	0.0399 (13)	0.0368 (13)	0.0039 (10)	0.0093 (9)	0.0012 (10)
C10	0.0341 (12)	0.0477 (14)	0.0467 (16)	-0.0032 (12)	0.0107 (10)	0.0005 (12)
C11	0.0311 (13)	0.083 (2)	0.068 (2)	-0.0007 (15)	0.0155 (13)	-0.0002 (17)
C12	0.0463 (16)	0.069 (2)	0.082 (2)	0.0195 (16)	0.0214 (15)	-0.0056 (17)
C13	0.0546 (17)	0.0488 (16)	0.070 (2)	0.0160 (14)	0.0189 (14)	-0.0064 (15)
C14	0.0386 (13)	0.0402 (14)	0.0606 (17)	0.0036 (11)	0.0145 (12)	-0.0041 (12)
C15	0.0303 (11)	0.0355 (12)	0.0444 (14)	0.0030 (10)	0.0131 (10)	-0.0023 (10)
C16	0.0279 (11)	0.0428 (13)	0.0367 (14)	0.0052 (11)	0.0066 (10)	-0.0057 (11)
Cd4	0.03174 (10)	0.02779 (10)	0.04123 (11)	0.00020 (7)	0.01369 (7)	-0.00157 (7)
N1	0.0470 (14)	0.0758 (19)	0.0743 (19)	0.0177 (14)	0.0217 (12)	-0.0025 (14)
N2	0.0441 (13)	0.0549 (15)	0.0705 (18)	-0.0129 (12)	0.0116 (11)	0.0017 (12)
01	0.0553 (14)	0.113 (2)	0.172 (3)	0.0363 (15)	0.0375 (16)	-0.003 (2)
02	0.0604 (14)	0.0629 (15)	0.134 (2)	0.0074 (12)	0.0241 (14)	-0.0206 (14)

O3	0.0363 (9)	0.0424 (10)	0.0559 (11)	0.0021 (8)	0.0209 (8)	0.0063 (8)
O4	0.0513 (11)	0.0340 (10)	0.0687 (13)	-0.0051 (8)	0.0252 (9)	0.0025 (9)
O5	0.0455 (12)	0.0763 (17)	0.196 (3)	-0.0287 (13)	0.0247 (15)	-0.0053 (18)
O6	0.0552 (12)	0.0437 (11)	0.1051 (18)	-0.0057 (10)	0.0193 (12)	0.0036 (11)
O7	0.0490 (10)	0.0401 (10)	0.0753 (14)	0.0072 (8)	0.0272 (9)	-0.0033 (9)
08	0.0340 (8)	0.0452 (10)	0.0501 (11)	0.0005 (8)	0.0190 (7)	-0.0040 (8)
O9	0.0437 (9)	0.0312 (8)	0.0447 (10)	0.0014 (7)	0.0118 (7)	-0.0014 (7)
O10	0.0691 (13)	0.0251 (8)	0.0578 (12)	0.0010 (7)	0.0365 (10)	-0.0005 (7)
O11	0.0388 (8)	0.0347 (9)	0.0451 (10)	0.0015 (7)	0.0100 (7)	0.0019 (7)
O12	0.0616 (14)	0.0817 (16)	0.132 (2)	-0.0254 (13)	-0.0041 (14)	0.0425 (15)
O13	0.0671 (12)	0.0495 (11)	0.0703 (14)	0.0076 (10)	0.0146 (10)	-0.0037 (10)
S1	0.0346 (3)	0.0338 (3)	0.0629 (4)	-0.0024 (3)	0.0192 (3)	-0.0011 (3)
S7	0.0341 (3)	0.0326 (3)	0.0588 (4)	0.0031 (3)	0.0174 (3)	0.0013 (3)

Geometric parameters (Å, °)

C1—C2	1.398 (3)	C14—H10	0.9300
C1—C6	1.401 (3)	C15—C16	1.519 (3)
C1—S1	1.764 (2)	C15—S7	1.802 (2)
C2—C3	1.381 (4)	C15—H11A	0.9700
C2—N1	1.456 (4)	C15—H12B	0.9700
C3—C4	1.352 (5)	C16—O7	1.244 (3)
С3—Н1	0.9300	C16—O8	1.261 (3)
C4—C5	1.364 (4)	Cd4—O10	2.2392 (18)
C4—H2	0.9300	Cd4—O3	2.2743 (17)
C5—C6	1.386 (3)	Cd4—O11	2.314 (2)
С5—Н3	0.9300	Cd4—O9	2.316 (2)
С6—Н4	0.9300	Cd4—O8	2.3251 (17)
C7—C8	1.515 (3)	Cd4—O7	2.541 (2)
C7—S1	1.794 (2)	Cd4—O4	2.593 (2)
С7—Н5А	0.9700	N1—O1	1.214 (3)
С7—Н6В	0.9700	N1—O2	1.223 (3)
C8—O4	1.244 (3)	N2—O5	1.219 (3)
C8—O3	1.262 (3)	N2—O6	1.222 (3)
C9—C10	1.396 (3)	O9—H13	0.8501
C9—C14	1.401 (3)	O9—H14	0.8500
C9—S7	1.763 (2)	O10—H15	0.8501
C10-C11	1.381 (4)	O10—H16	0.8499
C10—N2	1.454 (4)	O11—H17	0.8500
C11—C12	1.369 (4)	O11—H18	0.8500
С11—Н7	0.9300	O12—H19	0.8500
C12—C13	1.365 (4)	O12—H20	0.8500
С12—Н8	0.9300	O13—H21	0.8500
C13—C14	1.383 (3)	O13—H22	0.8500
С13—Н9	0.9300		
C2—C1—C6	115.8 (2)	S7—C15—H12B	109.8
C2—C1—S1	121.8 (2)	H11A—C15—H12B	108.3
C6—C1—S1	122.37 (19)	O7—C16—O8	122.3 (2)
C3—C2—C1	122.5 (3)	O7—C16—C15	121.0 (2)

C3—C2—N1	116.9 (3)	O8—C16—C15		116.7 (2)
C1—C2—N1	120.6 (2)	O10-Cd4-O3		135.97 (6)
C4—C3—C2	120.0 (3)	O10-Cd4-O11		92.01 (5)
C4—C3—H1	120.0	O3—Cd4—O11		89.62 (6)
C2—C3—H1	120.0	O10-Cd4-O9		84.51 (6)
C3—C4—C5	119.9 (3)	O3—Cd4—O9		93.62 (6)
C3—C4—H2	120.0	O11—Cd4—O9		176.36 (5)
С5—С4—Н2	120.0	O10-Cd4-O8		134.08 (6)
C4—C5—C6	120.9 (3)	O3—Cd4—O8		89.87 (7)
С4—С5—Н3	119.5	O11—Cd4—O8		90.64 (6)
С6—С5—Н3	119.5	O9—Cd4—O8		91.03 (6)
C5—C6—C1	120.9 (3)	O10-Cd4-O7		81.10 (6)
С5—С6—Н4	119.6	O3—Cd4—O7		142.85 (6)
C1—C6—H4	119.6	O11—Cd4—O7		85.89 (7)
C8—C7—S1	110.62 (16)	O9—Cd4—O7		92.51 (7)
С8—С7—Н5А	109.5	O8—Cd4—O7		53.39 (6)
S1—C7—H5A	109.5	O10-Cd4-O4		82.92 (5)
С8—С7—Н6В	109.5	O3—Cd4—O4		53.15 (6)
S1—C7—H6B	109.5	O11—Cd4—O4		88.02 (7)
Н5А—С7—Н6В	108.1	O9—Cd4—O4		92.59 (7)
O4—C8—O3	122.4 (2)	O8—Cd4—O4		142.99 (6)
O4—C8—C7	122.0 (2)	O7—Cd4—O4		162.68 (6)
O3—C8—C7	115.6 (2)	01—N1—02		122.1 (3)
C10—C9—C14	116.5 (2)	01—N1—C2		119.3 (3)
C10—C9—S7	122.14 (19)	O2—N1—C2		118.6 (2)
C14—C9—S7	121.40 (18)	O5—N2—O6		122.2 (3)
C11—C10—C9	122.2 (3)	O5—N2—C10		118.9 (2)
C11—C10—N2	116.8 (2)	O6—N2—C10		118.9 (2)
C9—C10—N2	121.0 (2)	C8—O3—Cd4		99.46 (14)
C12-C11-C10	119.7 (3)	C8—O4—Cd4		84.99 (14)
С12—С11—Н7	120.2	C16—O7—Cd4		87.26 (14)
С10—С11—Н7	120.2	C16-08-Cd4		96.93 (14)
C13—C12—C11	119.9 (3)	Cd4		108.1
С13—С12—Н8	120.1	Cd4		114.3
С11—С12—Н8	120.1	Н13—О9—Н14		109.6
C12—C13—C14	120.9 (3)	Cd4		123.8
С12—С13—Н9	119.5	Cd4		126.1
С14—С13—Н9	119.5	Н15—О10—Н16		109.8
C13—C14—C9	120.9 (2)	Cd4—O11—H17		117.1
C13-C14-H10	119.6	Cd4		107.6
C9—C14—H10	119.6	H17—O11—H18		110.2
C16—C15—S7	109.21 (16)	H19—O12—H20		111.3
C16—C15—H11A	109.8	H21—O13—H22		109.4
S7—C15—H11A	109.8	C1—S1—C7		101.89 (11)
C16—C15—H12B	109.8	C9—S7—C15		102.98 (11)
Hydrogen-bond geometry (Å, °)				
D—H····A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A

O9—H13…O13 ⁱ	0.85	1.84	2.682 (3)	173
O11—H18…O12	0.85	1.83	2.673 (3)	170
O9—H14…O3 ⁱⁱ	0.85	1.85	2.688 (2)	168
O10—H15…O11 ⁱ	0.85	1.94	2.777 (2)	169
O10—H16…O9 ⁱⁱⁱ	0.85	1.90	2.738 (2)	171
O11—H17…O8 ⁱ	0.85	1.85	2.677 (2)	165
O13—H21…O12	0.85	2.53	3.332 (4)	157
O13—H21···O7 ^{iv}	0.85	2.57	3.204 (3)	132
O12—H19····O7 ^{iv}	0.85	2.24	2.950 (3)	141
O12—H19····S7 ^{iv}	0.85	2.57	3.309 (2)	146
O12—H20···O2 ^v	0.85	2.30	3.099 (3)	157
O13—H22···O4 ^v	0.85	2.07	2.879 (3)	160
O13— $H22$ ···S1 ^v	0.85	2.97	3.520 (2)	124
Symmetry codes: (i) $-x$, $y-1/2$, $-z+1/2$; (ii) $-x$,	-y+1, -z; (iii) -x, -	-y, -z; (iv) $-x, y+1/2$, -z+1/2; (v) x, -y+1/2,	z+1/2.

Fig. 1

Fig. 2